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Abstract

Pinniped populations around the world increased rapidly after

hunting and culling during the nineteenth and twentieth

centuries ended. Some believe that pinnipeds are now

preventing the recovery of certain fish populations, and

that controlling pinniped population abundance using lethal

measures such as harvesting or by non‐lethal means like

contraception could recover fish populations. It is unclear,

however, how effective and how long it would take for such

methods of population control to bring numbers of pinnipeds

down to target levels. We used sex‐ and age‐structured

population models to estimate how quickly harbor seal (Phoca

vitulina) abundance in British Columbia, Canada, could be

reduced by 50%, through combinations of lethal removals

and sterilization of adult females. Models were fit to seal

abundance, demographic, and harvest data collected between

1879 and 2014. Simulation modeling suggests reliance on

contraception exclusively is unlikely to reduce the current

harbor seal population (numbering ~100,000) by 50%

within 25 years, and would result in more variable outcomes,

compared to lethal removals. Contraception could be com-

bined with harvesting to maintain a target abundance of harbor

seals (although captive studies with harbor seals are needed

to confirm the efficacy of contraception). Our simulation
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modeling approach provides a useful framework to assess how

non‐lethal measures could be integrated into policies that

promote active population control of harbor seal numbers.

K E YWORD S

British Columbia, harbor seal, integrated population model, population
control, sterilization

The recovery of many marine mammal populations in ecosystems around the world is considered one of the

great wildlife conservation success stories in the twentieth century (Magera et al. 2013). Examples are

numerous, and include cetaceans (whales, dolphins, and porpoises), pinnipeds (seals and sea lions), and otters

(Lotze et al. 2011, Monnahan et al. 2015, Valdivia et al. 2019). While many have celebrated the outcomes of

these protections, the recovery of some marine mammal species has presented formidable challenges for

managers tasked with recovery of mammals and fish that they prey on (Samhouri et al. 2017). Management

conundrums also arise when recovered marine mammal species consume species valued by fisheries (Punt and

Leslie 1995, Trijoulet et al. 2017, Reidy 2019), or compete with other species of high conservation concern

(Williams et al. 2011, Chasco et al. 2017).

Harbor seals (Phoca vitulina) are the most widely distributed pinniped species in the world and can be found in

temperate and Arctic seas of the Northern Hemisphere (Stanley et al. 1996). On the west coast of North America,

harbor seal populations increased exponentially following protection from (bounty) hunting and government‐led

culling programs in the early‐1970s, then leveled off in the 1990s (Jeffries et al. 2003, Brown et al. 2005,

Olesiuk 2010). In British Columbia, Canada, prolonged hunting and culling efforts in the nineteenth and twentieth

centuries were not controlled by any specific management policy, and have been preceded by some ambient level

of hunting by First Nations groups (McKechnie 2013).

Coincident with the recovery of harbor seals in British Columbia were declines in marine survival of some

stocks of Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss;

Zimmerman et al. 2015, Nelson et al. 2019, Sobocinski et al. 2020). Chinook and coho salmon, and steelhead are

valuable components of fisheries (commercial, recreational, and Indigenous), and are of high cultural significance to

Indigenous North Americans. An important role Chinook salmon serve in the contemporary ecosystem is as prey for

resident killer whales (Orcinus orca), an ecotype of killer whales that specialize almost exclusively on adult Chinook

salmon (Ford et al. 2016). Southern resident killer whales, a distinct group of fish‐eating killer whales, are currently

listed as endangered in Canada (Species at Risk Act) and the United States (Endangered Species Act), and the

recovery of Chinook salmon is of high importance to reducing risk of extinction of this population of killer whales

(Lacy et al. 2017, Wasser et al. 2017). In response to the perceived effect of predation on Chinook salmon

populations, and the potential competition with southern resident killer whales, some stakeholders have advocated

reducing the abundance of harbor seals in British Columbia and Washington, USA, through permitted culling,

sustainable harvest (Southern Resident Orca Task Force 2018, Pacific Balance Pinnipeds Society [PBPS] 2019),

or both.

The large numbers of harbor seals killed in British Columbia before federal protection in the 1970s

demonstrates that this population could likely be effectively controlled through intensive harvest (Olesiuk 2010);

however, there are several reasons why using lethal measures exclusively may not be desirable. For example, the

Strait of Georgia has the highest densities of harbor seals in the province (Olesiuk 2010), but its proximity to major

population centers (Vancouver and Victoria) and recreational areas could pose unacceptable risks to human safety.

Additionally, wildlife managers may lack the political will to undertake such a policy because of the ethical issues

associated with large numbers of lethal removals (Lavigne 2003). Similarly, embarking on a policy of active

population control using lethal measures would likely be met with litigation from animal welfare and conservation
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interests. Thus, solutions that reduce seal abundance or curtail reproduction that do not involve lethal methods of

population control could be of interest to managers.

Fertility control of terrestrial mammal species has been implemented in many ecosystems as an alternative

or complementary management strategy to hunting and culling, and is viewed by some as a humane means of

controlling wildlife populations (Kirkpatrick et al. 1996, Kirkpatrick and Turner 2008, Carroll et al. 2010, Messai

and Cowan 2014). There has been growing interest in the scientific literature on the subject of fertility control

in wildlife populations (Palmer et al. 2018, Yang et al. 2023), with one of the most common applications in

mammal species being immuno‐contraception intended to sterilize females. Such methods have been applied

to many species and include rabbits, opossums, badgers, foxes, cats, dogs, pigs, white‐tailed deer (Odocoileus

virginianus), elk (Cervus canadensis), bison (Bison bison), and horses (Equus caballus). Successful applications to

wild and feral populations of these species have been achieved in Asia, North America, and Australia (Messai

and Cowan 2014).

A considerable initial investment of effort and resources is necessary to achieve meaningful reductions in

fertility in wild populations, if immuno‐contraceptive methods are used exclusively (Messai and Cowan 2014). Large

field applications have also yielded mixed results, ranging from completely unsuccessful (Twigg et al. 2000) to

marked reductions in abundance and population growth rate (Kirkpatrick and Turner 2008, Rutberg and

Naugle 2008).

Among pinnipeds, 2 primary forms of contraception have been explored, mainly for application in captive

populations. These include injection of exogenous sex hormones that interrupt ovulation, and vaccine

administration (zona pellucida antigens) that trigger an autoimmune response directed at the ova, which in turn

prevents fertilization (Dierauf and Gulland 2001). Single‐administration zona pellucida vaccines have been

successfully used on wild grey seals (Halichoerus grypus) in the Atlantic Ocean (Sable Island, Nova Scotia, Canada),

which resulted in reduced pup production among treated animals by around 90% (Brown et al. 1997). This immuno‐

contraceptive was further found to be effective over a wide range of ages, although it was unclear how quickly

efficacy of the vaccine diminished after it was administered. Zona pellucida vaccines have not yet been

administered to harbor seals in an experimental setting, but is expected to result in similar outcomes to those seen

in grey seals (M. A. Fraker, SpayVac®, personal communication).

Before allocating resources to test the efficacy of zona pellucida immuno‐contraception vaccines on harbor

seals, the potential outcomes of large‐scale applications of this contraceptive should be evaluated and compared

with lethal methods used in the past (i.e., culling and hunting). One way of doing so is by combining population

models fit to data with simulation models, which has been done to estimate the effects of fertility control in pig and

horse populations (Ballou et al. 2008, Raiho et al. 2015, Pepin et al. 2017). Such approaches can explicitly

incorporate uncertainty into key system inputs and parameters to evaluate model predictions and management

outcomes.

Using both simple logistic growth models, and age‐ and sex‐structured models of the harbor seal population in

British Columbia, we compared expected outcomes of lethal and non‐lethal (sterilization by immuno‐contraception)

population control. The primary goal of our analysis was to compare an alternative form of population control to the

management alternative of indiscriminate (i.e., no targeted demographic) harvesting that has been proposed

(PBPS 2019). Performance measures for management actions include the expected duration of actions necessary to

achieve a desired predator abundance, and the level of effort needed to maintain the target abundance.

STUDY AREA

This study pertains to the harbor seal population in the Canadian province of British Columbia (944,735 km2). Major

marine geographic regions of the eastern Pacific Ocean relevant here include the mainland coast of British

Columbia, Haida Gwaii (formally the Queen Charlotte Islands), the Strait of Georgia, and the Strait of Juan de Fuca.

SEAL MANAGEMENT | 3 of 21

 19372817, 0, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/jw
m

g.22400 by U
niversity O

f B
ritish C

olum
bia, W

iley O
nline L

ibrary on [10/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Coastal geology is composed primarily of rocky shorelines and mountainous fjords on both the outer and inner

coasts, in addition to numerous shallow, muddy bays and estuaries within the Salish Sea region (Strait of Georgia

and Strait of Juan de Fuca). Climate along coastal British Columbia is generally mild and rainy because of the

influence of the North Pacific Current.

Land use in British Columbia varies considerably, from dense urban and residential areas near the major

population centers of Vancouver and Victoria, to remote rainforests and mountainous terrain along the central

coast, Vancouver Island, and interior. These remote areas are home to a wide variety of fauna. Terrestrial mammals

include bears (Ursus spp.), deer (Odocoileus spp.), elk, moose (Alces alces), bighorn sheep (Ovis canadensis), wolves

(Canis lupus), cougars (Puma concolor), and others. Marine mammal species include numerous healthy populations of

harbor seals, sea lions, otters, whales, dolphins, and porpoises. The time period of our modeling study extends from

around 1879 to 2014, which is when several data sets were collected.

METHODS

Harbor seal data

We used estimates of seal abundance, historical kill records, and estimates of age composition to develop

an age‐ and sex‐structured population dynamics model of the harbor seal population in British Columbia. There

were 19 abundance estimates available from aerial surveys of harbor seal haul‐outs in British Columbia, which

were performed periodically between 1973 and 2014 (Olesiuk 2010, Majewski and Ellis 2022; Table 1). Kill

records from hunting and culling programs in the late‐nineteenth and twentieth centuries were summarized by

Olesiuk (2010). Because the number of recorded pelts and bounties likely underestimated the number of

animals actually killed because of unrecoverable carcasses, Olesiuk (2010) assumed 62% of animals killed

were accounted for. Additionally, because the number of animals reported killed via programmatic culling was

likely overestimated (i.e., all animals shot did not necessarily die), the study assumed a kill probability of 75%

(Olesiuk 2010). Seal pups were likely to have been more vulnerable to harvest than older individuals

(Bigg 1969, Olesiuk 2010), so we assumed different vulnerability parameters for pups and non‐pups (Table 2).

Finally, we used age‐composition estimates for seals shot during a period of intensive culling in the 1960s,

which were based on analysis of canine teeth from 324 animals sampled during these hunts (Bigg 1969). We

used these 3 data sets, along with prior distributions on several parameters, to fit the population model using a

Bayesian approach.

Population dynamics models

The primary population dynamics model developed for this study is a state‐space age‐ and sex‐structured model

that estimates the abundance of each age‐sex group on an annual time step between 1879 and 2018. The state‐

space framework allows us to explicitly account for error associated with the observation of the abundance data, in

addition to process error, which we assume enters the population model in the form of annual deviates from

recruitment. In addition to the sex‐ and age‐structured model, we developed a simpler logistic growth model for the

harbor seal population, which we fit to the same abundance data. We developed a simpler model to evaluate

whether sufficiently similar results could be obtained using a logistic model that was fitted to the same abundance

data, and applied to evaluate the effectiveness of the alternative harbor seal control options (see Supporting

Information).

In the age‐ and sex‐structured model, the maximum age for each sex (As) modeled was 25 for females and

15 for males; we assumed the small numbers of older animals fell into these maximum age groups (Table 2).
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We assumed the harvested population in 1879 was at a stable age distribution and initialized the population model

with the following equations:

( )N γ N s s v U a A= 1 − (1 − ) 1 ≤ <a
s s

a
s a

a
s

a t
s

1, 1879
( −1) (1)

N γ N s v U a A= (1 − ) =a
s s

a
s A

a t
s

1, 1879
( −1) (2)

Where N is the harvested population, va andUt are the vulnerability at age a and harvest rate in year t, and γs is the

proportion of the population of sex s at equilibrium: γ =s
l

l

∑

∑ ∑

a
A

a
s

s a
A

a
s

=0

=0
. Here, la

s is the survivorship of animals of sex s at

age a:







l

a

l l s a A

l l s a A

=

1 = 0

= 0 < <

= =
a
s a

s
a
s

a
s s

a
s

a
s

a
s s

−1 −1

−1 −1

(3)

TABLE 1 Estimated and observed annual abundances of harbor seals in British Columbia, Canada, 1973–2014.
We calculated observed abundances from aerial survey data in Olesiuk (2010) and adjusted them by the observability
coefficient (q), whereas we obtained estimated abundances from the best‐performing age‐structured population model.

Abundance

Year Estimated (95% CI) Observed/q

1973 11,991 (8,723–15,258) 10,068

1974 13,042 (9,771–16,314) 11,105

1976 15,470 (12,975–17,966) 13,834

1982 25,823 (21,607–30,039) 25,336

1983 28,114 (23,882–32,346) 28,151

1984 30,602 (26,198–35,007) 31,346

1985 33,289 (27,836–38,742) 34,334

1986 36,189 (31,026–41,352) 37,620

1987 39,311 (33,463–45,160) 42,436

1988 42,635 (35,401–49,869) 46,512

1990 49,919 (43,555–56,284) 56,998

1992 57,888 (47,840–67,936) 58,842

1994 66,469 (54,991–77,947) 76,423

1996 74,859 (67,518–82,200) 80,610

1998 82,342 (74,099–90,585) 75,817

2000 88,426 (78,495–98,356) 87,624

2003 93,792 (85,619–101,964) 93,268

2008 96,606 (88,584–104,627) 93,692

2014 97,537 (88,438–106,637) 99,345
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We assumed that annual survival rates for pups (s0 = 73%), females (sFemale = 90%), and males (sMale = 85%) were

constant over time, and known from previous estimates from tagging studies in the literature (Olesiuk 1993).

Because tagging studies such as these are susceptible to bias from issues like tag shedding, and because natural

mortality rate can be non‐stationary over time, we also evaluated 2 alternative models: a version with female

nd male survival rates 25% greater than the nominal rates and a version with rates 25% less than the nominal

survival rates.

We projected the population model forward from initial conditions with the following set of equations:





( )

N

N s v U a A

N N s v U a A
=

(1 − ) 1 ≤ <

+ (1 − ) =
t a
s

t a
s

a
s

a t
s

t a
s

t a
s

a
s

a t
s+1, +1

,

, , −1

(4)

We calculated the annual harvest rate using the equation:

U
C

N
= ,t

t

t
(5)

TABLE 2 Summary of parameters used in the sex‐ and age‐structured population model for harbor seals in the
Strait of Georgia, British Columbia, Canada.

Type Symbol Value Description Source

Estimated
parameters

K Carrying capacity

N1879 Abundance in 1879

ϵ1940−2018 Recruitment deviates

θ Pup production shape
parameter

Fixed parameters va
Pre−1915 1.0, 0.50 Vulnerability for pups and

non‐pups before 1915

Bigg (1969),

Olesiuk
(2010)

va
Post−1915 1.0 Vulnerability (pups and

non‐pups) after 1915

As 15, 25 Male and female max. lifespan

(i.e., plus group)

Bigg (1966, 1969)

sFemale 0.90 Female survival Olesiuk (1993)

sMale 0.85 Male survival Olesiuk (1993)

sPup 0.73 Pup survival Olesiuk (1993)

fa 0.0 (age 1–3), 0.29, 0.66, 0.79,
0.91 (ages 4, 5, 6, 7–30)

Fecundity at age Olesiuk (1993)

σqmle 0.05 qmle prior SD

σRec 0.075 Recruitment deviate SD

ρ 0.70 autoregressive term for
recruitment deviates

Øigård and
Skaug (2015)

Subscripts t 1879:2018 Year

s Female, male Sex

a 1: As Age
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where Ct is the number of animals killed in year t, which is assumed to be known exactly from published estimates

described above (Olesiuk 2010). To improve the stability of the model‐fitting process, we assumed a minimum

annual harvest rate of 0.001. The maximum annual harvest rate was set at 0.90.

We assumed annual pup production was the density‐dependent process limiting population growth,

and we described this process by a theta‐logistic or Pella‐Tomlinson relationship (Pella and Tomlinson 1969),

where the number of pups that enter the population annually is a function of abundance relative to population

carrying capacity. We believe this is a reasonable assumption, as population growth is likely limited by

suitable habitat, prey availability, or both (Brown et al. 2005), and because pup production and survival in

pinniped populations is often inversely related to animal density at haul‐outs and pupping areas (Coulson and

Hickling 1964, Bigg 1966, Breed et al. 2013). We assumed a 1:1 sex‐ratio for pup production in each year

(Bigg 1969):









∑N F f N= 0.5 ,t

s
t

a

A

a t a
Female

,0
=1

,

Female

(6)

where fa is the fecundity at age a (Table 2), and Ft is the time‐varying birth rate:







 









F
N

K
exp ε= 1 − ( ).t

t
θ

t
−1

(7)

Here, K is the population carrying capacity, θ is the parameter that controls the strength of density

dependence, and εt is the annual recruitment deviation, which were assumed to be normally distributed:

ε σ~ Normal(0, )t Rec . We estimated recruitment deviations only for pup production between 1940 and 2018, as

the first year of observed data (age composition) was not available until the mid‐1960s. To limit the amount of

process error, we set σRec to 0.075, which is comparable with levels of annual recruitment variation in other seal

populations (Øigård and Skaug 2015). In addition to Equation 7, we also evaluated an alternate pupping

function:








 









F F
N

K
exp ε= 1 − (1 − ) ( ),t

t
θ

t
−1

(8)

where F is the pupping rate at carrying capacity (K ; Skaug et al. 2007). Versions of the age‐structured model that

used Equation 8 were far less stable during the model‐fitting process (described below), and did not consistently

produce valid parameter estimates. Thus, from this point forward, we only discuss methods and results using

versions of the age‐structured model that incorporate Equation 7 as a pupping function.

Parameter estimation

We fit our state‐space models to the abundance, age‐composition, and harvest data by minimizing the objective

function described below, which is comprised of the sum of 2 likelihood terms and the prior distributions specified

above: L L priors( + + )1 2 . For the observation model, we assumed the natural log of the abundance estimates were

normally distributed with the following log‐likelihood:

L nlog σ c= − ( ) + ,e Obs1 1 (9)

where c1 is a component of the lognormal log‐likelihood that remains constant at different parameter values and

can be ignored; σobs is the observation error standard deviation:
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σ
log x q N

n
=

∑ ( / / )
Obs

i
n

e i i=1
2

(10)

where xi is the observed total abundance, Ni is the predicted non‐pup abundance from the population model

described above, n is the number of abundance observations, and q is the observability coefficient for the

abundance of harbor seals:











q
log x N

n
= exp

∑ ( / )i
n

e i i=1
(11)

The normal prior distribution for q assumed a mean of 1.0 and a standard deviation of 0.15. We incorporated age‐

composition data from lethal sampling efforts in the 1960s (Bigg 1966, 1969) into the likelihood function by

assuming the observed proportions at age follow a multinomial distribution. Although the samples were collected

over several consecutive years, we assumed all samples were from 1965 because only the aggregate proportions

were reported:




















∑ ∑ ∑L

x
x log N N c= −

25
+

s
s

a

A

a
s

t a
s

a

A

a
s

2
1965 =1

1965, ,
=1

1965,

−1

2

s s

(12)

where c2 is a component of the multinomial log‐likelihood that remains constant at different parameter values and

can be ignored, and x a
s
1965, are the observed numbers of animals for each sex, and age class from the lethal sampling

circa 1965. These samples were likely not random (e.g., bias in behavior of captured animals); therefore, we

assumed an effective sample size of 25 animals (Skaug et al. 2007), which is far lower than the actual number of

samples but large enough to influence the log‐likelihood. We minimized the objective function using the mle

function (BFGS algorithm) in the stats4 package in the R Programming Environment (R Core Team 2017).

Comparison of lethal versus non‐lethal population control

We used the posterior parameter estimates from the age‐structured population model to simulate future harbor

seal population dynamics over a range of population control scenarios. We tested 2 general population control

methods: indiscriminate lethal harvest of pups and adults and contraceptive measures through vaccination of adult

females. Indiscriminate harvest refers to removing animals without a specific bias towards sex or age. When

simulating future population dynamics, we assumed the annual recruitment deviates were auto‐correlated through

a first‐order auto‐regressive process, which was modeled by ρ uϵ = ϵ +t t t−1 , where u N σ~ (0, )t Rec and ρ = 0.70

(Øigård and Skaug 2015). We performed 1,000 simulations for each scenario.

In future projections of lethal management actions, we assumed animals were killed at random, with no age‐

specific assumptions about vulnerability (vulnerability for pups = 1.0, non‐pups = 1.0). We make no specific

recommendation or assumptions about how lethal removals are made (e.g., netting, shooting), but we do assume

that the number of removals under each scenario is executed without error.

For simplicity, and because no long‐term studies were available, we assumed sterilization lasts the entire

lifetime of a treated animal, which is plausible based on studies of similar contraceptive agents on other species

(Dierauf and Gulland 2001). Further, we assumed that treatments are applied randomly across all non‐pup age

classes, and that all treated animals are marked, so that re‐treatment will not occur. We assumed that the treated

population of females experienced a 90% reduction in fecundity, and that the effect was the same across all age

classes (Brown et al. 1997). Essentially, these scenarios depict the most optimistic outcomes, in terms of

implementation efficacy, and results should be interpreted as a best‐case scenario.
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For the time period after contraception has commenced, annual pup production is calculated by modifying

Equation 7:
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where pt is the proportion of treated females treated in year t, and f*a is the altered fecundity schedule for treated

animals. The proportion of treated females in the population is N N/t
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Female, where the number of treated females

in the population is
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Vt a, is the number of females (non‐pups) treated in year t, which are subject to the same annual survival rate as

untreated animals. For the purposes of this simulation, we did not track the age‐structure of the vaccinated female

sub‐population separately.

Under both lethal and non‐lethal management options, we simulated the population dynamics of the harbor seal

population over multiple levels of effort. For lethal measures (i.e., indiscriminate lethal removals), we assumed the

maximum number of animals that could be killed annually was comparable to the maximum observed harvests in the

historical records, which was around 16,000 animals per year (Figure 1). For contraception of females (vaccination),

we assumed the maximum effort could be 10,000 animals, which is likely far higher than would be logistically feasible.

We evaluated scenarios where exclusively lethal or exclusively non‐lethal methods were used and scenarios that used

a combination of both methods from the start of the management period. For each scenario, we calculated the mean

number of years necessary to achieve the target abundance for the harbor seal population, which we set at 50,000

F IGURE 1 Predicted (solid line) and observed (circles) abundance of harbor seals in British Columbia, Canada,
1880–2018. The 95% probability intervals for estimated abundance are depicted by the dashed lines. The number
of annual kills (bars) from records of hunting and culling (Olesiuk 2010) are shown along the x‐axis.
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adult animals. We selected this target based on the abundance of seals desired by some stakeholders in British

Columbia (PBPS 2019).

For scenarios where a combination of both lethal and non‐lethal methods was used, we evaluated 2 different

implementations: a combination of lethal and non‐lethal efforts occur simultaneously from the start of the

management period and an approach in which lethal harvesting was used exclusively until the seal population was

depleted to the target abundance, after which contraception was performed in an attempt to maintain the target

abundance through non‐lethal efforts. We added the second approach to the analysis after preliminary simulation

results suggested depletion of the seal population using contraception exclusively would require a large number of

vaccines, which could be cost‐prohibitive. Previous research on terrestrial species reported more realistic

management scenarios may involve using contraception to suppress or maintain a population previously depleted

through culling (Raiho et al. 2015).

RESULTS

Seal population dynamics

The best age‐structured model used a value of 0.50 for the vulnerability of non‐pups (before 1915; i.e., base case

age‐structured; Figure 1; Table 2). We evaluated 9 different models, with different assumptions regarding harvest

vulnerability before and after 1915 (Table S3, available in Supporting Information). The alternative age‐structured

model, which assumes a non‐pup natural mortality rate that is 25% less than the base case model, tracked the

dynamics of the base case model from the first year (1879) of the time series through the mid‐1990s, at which point

the abundance began to approach an asymptote (Table 3; Figure S1, available in Supporting Information). The

abundance of the alternative model stabilized at a lower population size compared to the base case model, but the

mean abundances between 1995 and 2018 still overlapped with the 95% probability intervals for the estimated

abundance of the base case model (Figure 1; Figure S1). For example, the estimated abundance in 2018 from the

alternate age‐structured model was 90,233, compared to 97,767 animals predicted by the base case model

(Figure S1). The model that considered 25% more natural mortality did not produce a stable solution.

When fit to the same abundance data as the base case age‐structured model, the best‐performing theta‐logistic

model showed the same general population dynamics from 1939–2018 (Figure S1). A theta‐logistic model with θ as

an estimated free parameter (corrected Akaike's Information Criterion [AICc] = 338) out‐performed the basic logistic

growth model where θ = 1 (AICc = 446). Uncertainty around annual population size in the decades before and up

TABLE 3 Parameter estimates for 2 sex‐ and age‐structured models of the harbor seal population in British
Columbia, Canada. Models were fit to several data sources collected between 1879 and 2014. The marginal
posterior estimates and standard deviations (SD) are shown for the base case model, which assumes non‐pup
natural mortality rates reported in Olesiuk (1993), and for an alternative hypothesis where natural mortality of non‐
pups is 25% less than the literature value. An additional model (+25% natural mortality) was also tested but was not
able to produce a stable solution. Standard deviations for each parameter estimate are shown in parentheses,
except for qmle, which has a closed‐form solution.

Parameter Definition Base case SD (Base case) −25% M SD (−25% M)

K Carrying capacity 117,673 10,570 109,190 9,997

N1879 Total abundance in 1879 49,825 3,745 44,832 3,018

θ Pella‐Tomlinson shape parameter 2.97 0.27 1.87 0.32

qmle Observability coefficient 1.08 ‐ 1.15 ‐
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until the mid‐1960s was higher for the theta‐logistic model estimates compared to the full age‐structured model;

this is likely the result of the lack of age‐composition data. While current abundance estimates of the seal

population were similar for both model structures, the age‐structured model estimated a higher carrying capacity

(median = 117,673) relative to the theta‐logistic model (median = 99,882; Table 3; Figure S2, available in Supporting

Information).

Using the base case age‐structured model, the estimated mean population size in 1879 was 49,825 seals (95%

probability interval [PI]: 42,485–57,165; Figure 1). The seal population reached its minimum abundance in 1967 at

8,149 animals (95% PI = 5,391–10,906), a consequence of the high mortality rates that occurred throughout

the decade (Figure 1). The current (2018) estimated abundance of harbor seals in British Columbia is 97,767

animals (95% PI = 87,553–107,982), and the estimated carrying capacity of the population is 117,673 (95%

PI = 96,955–138,390), which implies the current abundance is at 83% of carrying capacity. The process error in the

base case age‐structured model (i.e., the recruitment deviates) was highest as the population grew rapidly between

1970 and the 1990s (Figure S4, available in Supporting Information). The estimated observability coefficient (q )mle

for all 3 models was >1.00, which implies that either aerial surveys over‐counted the actual numbers of adult harbor

seals in the survey area or the factor applied by the Department of Fisheries and Oceans Canada to convert counts

to the total population was positively biased. Previous research suggested that potential sources of observation

error could be from immigration, emigration, or inclusion of pups in the adult counts (Olesiuk 2010).

Once the population was protected from hunting and culling, the ratio of females to males in the population

increased steadily, with the current sex ratio estimated to be 59.6% females and 40.4% males (Figure S2). The

estimated population proportions by age in 1965 showed a good fit to the observed data for females and males

(Figure S3, available in Supporting Information). The average age of non‐pups in the population increased following

cessation of harvesting in the early‐1970s, as the proportions of young animals began to decline (Figures 2–3).

Specifically, the average age of adult females increased from 9.2 years to 11.5 years, while the mean age for males

went from 6.1 years to 7.4 years (Figure 3). The maximum estimated kill rate for harbor seals in British Columbia

F IGURE 2 Estimated pupping rate (squares) in the population and harvest rates (circles) in the British Columbia,
Canada, harbor seal population, 1880 and 2018.
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occurred in 1964 at 47.2% (Figure 2). It is estimated that birth rates were highest during periods of intense harvest

but declined steadily once the population was protected in the 1970s (Figure 2). Average age has been stable since

the 2010s for males, while the average age of females appears to still be increasing (Figure 3).

Comparison of management alternatives

The future population dynamics of the harbor seal population were simulated under 9 different scenarios of active

population control: 3 scenarios using varying levels of indiscriminate harvesting exclusively, 3 using fertility control

exclusively, and 3 using a combination of lethal measures and fertility control from the first year of the management

period (Figure 4). Simulations of these 9 scenarios suggest that adoption of lethal indiscriminate harvesting as a

management alternative would require considerable effort to achieve the target depletion level (50,000 animals)

within 10 years (Figure 4). For example, a simulated annual removal of 5,000 animals failed to achieve the target

population level within 25 years (Figures 4–5; Figure S5, available in Supporting Information). On average, an annual

removal of 9,000–10,000 animals would be required to reduce the seal population to the target abundance within a

decade (Figures 4–5 and S5). Annual removals of 15,000 animals/year, which would be comparable to the annual

largest efforts during the twentieth century, would reduce the population to the target abundance within

F IGURE 3 Bubble plots depicting proportions at age of British Columbia, Canada, harbor seals, 1970–2018.
Separate plots for females (top) and males (bottom) are shown. The radius of circles are proportional to the fraction
of the population at each age (y‐axis). The solid black line shows the mean age of the population in each year.
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approximately 5 years, on average (Figure S5). Using non‐lethal measures exclusively, between 4,000 and 5,000

females would need to be vaccinated annually to achieve the target abundance within 25 years (Figures S5 and 5).

Approximately 7,500 females, on average, would need to be vaccinated annually to reach the target abundance in

15 years. Once annual vaccination efforts reach 7,000–7,500 females/year, there is a clear level of diminishing

returns, with regard to decrease in population level per vaccination (Figure S5).

Management scenarios involving a simultaneous combination of harvesting and fertility control reduced the

number of years necessary to achieve the target abundance, compared with those only using lethal methods.

(Figures 4 and S5). For example, while indiscriminate harvesting of 5,000 animals a year would fail to achieve target

abundance within 25 years, such an effort that is augmented with the vaccination of 2,500 females would achieve

the target population abundance in approximately 15 years (Figure 4). Similarly, an annual combination of 5,000

culls and 5,000 vaccinated females would achieve target abundance within approximately 10 years of management

(Figure 4 and S5). When non‐lethal methods were applied after the target abundance has been achieved through

harvesting, moderate levels of contraception were required to maintain the population below or at the target

abundance (Figure S6, available in Supporting Information). Scenarios where 2,500 vaccines were applied annually

following a period of harvesting failed to maintain the seal population at target abundance, and the population

steadily recovered, albeit to a lower level (Figure S6). It appears that annual efforts involving the vaccination of at

F IGURE 4 Projections of the British Columbia, Canada, harbor seal population under multiple population
control scenarios using indiscriminate lethal removals (number removed each year [kills]) and fertility control
measures (number of adult females sterilized each year [str]), and combinations of both. For each scenario, 100
simulations of annual population abundance are shown (light gray lines), which were generated by combinations of
parameters drawn from their posterior estimates. The solid black lines depict the median annual abundance (from
1,000 simulations), while the gray bars along the horizontal axis show the annual pup abundance. The horizontal
dashed line shows the target abundance of 50,000 animals.
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least 5,000 females would be required for scenarios where fertility control was implemented after target abundance

was reached through harvesting.

While augmenting lethal approaches with non‐lethal contraceptive methods did result in faster depletion of the

seal population, scenarios that used both methods, or used contraception exclusively, resulted in higher deviations

from the target abundance (Figure S5; Table S7, available in Supporting Information). Use of contraception also

resulted in higher variation around the target abundance than scenarios that only used lethal methods (Figure S5;

Table S8, available in Supporting Information). Scenarios that used only lethal methods, or combinations of methods

with low to moderate numbers of vaccines, typically had a coefficient of variations (CV) of population abundances

of 0.05 or less once target abundance was reached. In contrast, scenarios that used large numbers of vaccines

(>7,500/year) had higher variation around the target abundance, and much higher negative deviations from that

level (Figure S5; Table S8).

Generally, the base case and alternate age‐structured models produced similar population responses across

the various management scenarios simulated in this analysis (Figures S5–S6). More specifically, for 13 of the 22

management scenarios (59%; Figure S5) where target abundance was achieved, the median difference between the

2 models in terms of number of years to target abundance was only 1 year (Table S6, available in Supporting

Information). In all scenarios, the difference between the base and alternative age‐structured models never

exceeded 4 years. Because the base case version of the age‐structured model estimated a higher current

abundance of the harbor seal population, the time and effort needed to reach the target abundance was longer and

higher compared to the alternate version (Figures S5–S6; Table S6). Compared with the age‐structured models, the

logistic model produced comparable outcomes in some scenarios but markedly different outcomes in others

(Figures S5–S6; Table S6). Specifically, when management scenarios involved lethal methods exclusively, the logistic

population model projected dynamics that were similar to the 2 age‐structured models, particularly the base case

(Figures S5–S6). The logistic model failed to match the age‐structured models in scenarios that relied exclusively, or

heavily, on non‐lethal methods. The clearest example of this discrepancy occurs in scenarios where non‐lethal

F IGURE 5 Median number of years to achieve the target abundance of 50,000 harbor seals in British Columbia,
Canada, as a function of annual kills from indiscriminate lethal removals and annual sterilizations of adult females
(triangles). Estimates of years to target abundance are based on 1,000 simulations for each management scenario
and assume uniform vulnerability across all age groups (including pups). Scenarios that achieved target abundance
are shown in black, while those that never achieved the target abundance within 25 years (2019–2044) are in red.
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measures are used exclusively (e.g., row 1 of Figure S5). Because the logistic model relies on adjustments to the

intrinsic growth rate of the population (r ) to simulate diminished fecundity, a population at or near carrying capacity

will not decrease significantly as a result of simply decreasing r . While the logistic model did capture reduced

fecundity from fertility control in scenarios where there was an initial depletion, that reduction was not as strong as

the age‐structured models (Figure S6).

DISCUSSION

Active population control of terrestrial and aquatic species has been used to recover their prey or competitors, to

control invasive species, and to reduce conflicts with human populations. Providing decision‐makers with multiple

management options for altering abundance or reproductive capacity of these species is needed when logistical,

ethical, and political considerations are present. Our analysis provides a quantitative assessment and comparison of

lethal and non‐lethal management actions that could be used to manage British Columbia's harbor seal population,

which may be impeding the recovery of salmon species of high conservation concern (Chasco et al. 2017, Thomas

et al. 2017).

Our simulation models suggest a considerable effort would be required to reduce the current harbor seal

population to the 50% level proposed by some stakeholders, regardless of whether lethal or non‐lethal

measures are used. Using indiscriminate harvesting exclusively would require removing at least 6,000–7,000

adult animals each year to reduce the current population by half, within a 25‐year period. Achieving the same

reduction in population size within the same time period using fertility control would require sterilizing >5,000

adult females annually. A combination of lethal and non‐lethal methods could also be used effectively to

deplete, then maintain the harbor seal population at the target abundance. This conclusion is consistent with

the findings of similar studies that forecasted management options for terrestrial species (Raiho et al. 2015,

Pepin et al. 2017, Croft et al. 2020). Management scenarios that include moderate to high levels of fertility

control will have low precision relative to target abundance because of the delayed effect of sterilization on

population fecundity, and will tend to deviate from the target abundance by a higher magnitude than if lethal

harvesting is undertaken.

Harbor seal population status in British Columbia

The base case age‐structured population model we developed estimates the recent (2018) abundance of British

Columbia harbor seals at almost 100,000 animals (mean = 97,767, 95% PI = 87,553–107,982). This estimate is

comparable to Olesiuk's (2010) estimate of abundance for British Columbia in 2008 of 105,000 animals, as is our

median estimate of population size around 1880 of between 55,000–60,000 animals. Further, the general

population trends throughout the nineteenth and twentieth centuries (and the levels of uncertainty) produced by

our age‐structured model are similar to the reconstruction in the same study, although our estimates of

abundance between 1930–1960 appear to be somewhat higher. Unlike previous work (Olesiuk 2010), our age‐

structured model was able to estimate current population demographics, and how they changed during periods

of heavy harvesting and culling.

Our estimates imply a current sex ratio of nearly 60:40 females to males, and may be useful for updating

bioenergetics models that estimate consumption and predation rates of harbor seal prey. For example, the most

recent bioenergetics models for harbor seals in the region (Howard et al. 2013) use sex and age proportions derived

from studies conducted in the late‐1960s, when the seal population was heavily exploited and well below carrying

capacity (Bigg 1966, 1969). Our results suggest both the average age and the proportion of females in the

population have increased since federal protection in the early‐1970s (Figure 3; Figure S4). Updating estimates of
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population demographics could reduce model uncertainty, and if lethal removals were to occur, a sampling program

similar to the one that occurred in the 1960s could be implemented to achieve this (Reidy 2019).

Differences among population models

In addition to the base case formulation, we also fit an alternate version of the age‐structured model and a logistic

growth model to harbor seal abundance data. Evaluating multiple model formulations—which are, in essence,

multiple hypotheses—is prudent in this situation because different assumptions about the underlying process could

significantly affect the results of our management simulation evaluation. In this case, we are also concerned about

the sensitivity to and uncertainty around important population parameters, like carrying capacity, that may be

important for the purpose of managing pinniped populations (Jeffries et al. 2003, Brown et al. 2005). Furthermore,

some may prefer to apply the simpler logistic model to evaluate alternative population controls (e.g., PBPS 2019),

assuming that the logistic model provides a close approximation of results obtainable from an age‐ and sex‐

structured model. We tested this assumption by evaluating lethal and non‐lethal population control options, and

different results were produced in some management scenarios.

While all 3 of the models we developed suggest that the British Columbia harbor seal population leveled off

after its rapid increase from 1980–2000, there is some uncertainty around the current abundance relative to

carrying capacity. The logistic model suggests a population carrying capacity of just below 100,000 animals, which

would imply a current abundance that is very close, or at, its natural limit. Both variants of the age‐structured model

suggest carrying capacity probably lies between 110,000 and 120,000 animals. We expect recent (and future) aerial

surveys of seal numbers by Department of Fisheries and Oceans Canada scientists will be important for reconciling

the discrepancy between the estimates of the age‐structured and logistic models.

The logistic model could not properly evaluate the potential biological consequences of non‐lethal population

control options, and the model yielded markedly different predictions from those of the age‐structured models

(especially in management scenarios where non‐lethal control methods were evaluated). For example, our lightly

depleted logistic model failed to respond to vaccination (Figures S5–S6; Table S6) because vaccination affected only

the surplus production term, which was close to zero when abundance was close to carrying capacity (see

Supporting Information). The logistic model also consistently underrepresented the population fluctuations that

could be expected to occur after the target abundance was reached (Tables S7 and S8). If substantially overshooting

the target abundance (e.g., deviations >−20% of the target) is unacceptable, the logistic model would fail to reveal

the policy options where this could occur (Table S7).

The median numbers of years to achieve target abundance were similar between the logistic and age‐ and sex‐

structured models for intensive lethal control options (e.g., when the number of seals culled per year was ≥10,000;

Table S6). The logistic model, however, fell short in all other aspects. We therefore conclude that age‐ and sex‐

structured models are preferable for evaluating lethal and non‐lethal population control options for harbor seals in

British Columbia. Projection results obtained only from logistic‐type models should be viewed with caution,

especially when evaluating non‐lethal controls and different combinations of lethal and non‐lethal controls. The

differences in projection results obtained between the different population dynamics models we considered

indicates that it may be useful to evaluate the accuracy of the different models through a simulation study, or even

a closed‐loop or feedback control simulation evaluation (Punt et al. 2020).

Active population control of harbor seals

From the early‐1970s, the British Columbia harbor seal population was reduced to about 5% of its current

population by lethal means (Bigg 1966, 1969; Olesiuk 2010). Thus, it is unsurprising that our simulation models
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predicted the seal population could be reduced by half in a relatively short time (<10 years), if large numbers of

animals (≥10,000) were removed in consecutive years (Figures 4–5 and S5). If indiscriminate harvesting were

implemented at levels comparable to maximum efforts seen in the twentieth century, a reduction of 50% of the

population could be achieved in <5 years (Figures 5 and S5).

We show that it may be possible to reduce the harbor seal population in British Columbia solely through

fertility control; however, it would require a large number of vaccines, and would probably take considerably longer

to achieve a marked depletion of the population. Reducing the population by half within a 25‐year management

period would require ≥5,000 females to be vaccinated annually, for approximately 22–25 years. Vaccinating 10,000

females per year would achieve the same result in approximately 15 years. This difference in timing relative to

numbers vaccinated highlights the non‐linear relationship between the number of animals vaccinated and the time

required to achieve the target abundance (Figure 5).

Our projections further suggest that the target abundance could be maintained by vaccinations following a

period of intense harvesting, but that it would still require an annual effort of around 5,000 vaccinations per year to

prevent the population from slowly recovering. A combination of lethal and non‐lethal actions performed

simultaneously could also be used to achieve the target abundance and reduce the number of years to reach the

management goal. For example, the target abundance could be reached in just 13–15 years by lethally removing

7,500 animals per year. Augmenting that policy with the vaccination of 1,000 adult females would reduce the time‐

to‐target abundance to 8–9 years (Figure 4). Such a policy might be advantageous if managers aimed to use only

non‐lethal management options in areas close to human population centers, but reduced time‐to‐target prediction

would hold only if animals mixed spatially.

Both lethal and non‐lethal methods of population control have potential risks and downsides that may be

important for managers to consider. Regulated harvesting of pinnipeds (e.g., a First Nations hunt) would carry

considerable political risk due to public concern for animal welfare (Yodzis 2001), and from skepticism within the

scientific community regarding unintended consequences for the ecosystem (Lessard et al. 2005, Bowen and

Lidgard 2013, Trites and Rosen 2019, Trzcinski 2020). An action involving lethal removals may also confer

advantages in line with the goals of ecosystem‐based fisheries management (Marshall et al. 2018).

Because the direct effects of lethal control occur immediately, it is far easier to track performance metrics (e.g.,

change in abundance or current abundance) of a particular action from year to year. Because fertility control affects

the reproductive rate of the population, there may be a delay, which could result in an inadvertent reduction of the

population below the target level (Figures 4 and S5–S6). Similarly, if there were undesirable, unintended ecosystem

effects as a result of a reduction in the harbor seal population, a management action that uses lethal removals could

be abandoned immediately, and recovery could commence beginning with the next cohort of pups (Figure S6,

column 1). In contrast, a reduction of the population achieved with fertility control could take decades to recover if

a large fraction of females were already sterile because of the longevity of female harbor seals (20–25 years;

Olesiuk 1993). Short of lethally removing infertile animals, managers would be left with few options to recover the

population.

An example of an indirect ecosystem effect that has concerned some scientists is the potential effect a reduced

harbor seal population would have on mammal‐eating transient killer whales, which are thought to be thriving in

British Columbia because of an abundance of prey (Ford et al. 2013, Shields et al. 2018, Trites and Rosen 2019,

Trzcinski 2020). Harbor seals are the preferred prey item of transient killer whales, so it is conceivable there could

be negative consequences associated with a 50% reduction in the harbor seal population. Previous researchers on

killer whale foraging behavior suggest that these animals prefer to target pups and juvenile seals over full‐grown

adults (Baird and Dill 1995). Thus, it is possible that selective removals of older, mature individuals could mitigate

effects on killer whale prey availability, should a lethal management scenario be implemented. Such precision and

selectivity would not be an option in a scenario that used only non‐lethal measures, and our simulations suggest

fertility control would reduce the proportion of pups significantly, relative to a population of the same size that was

managed through harvesting (Figure 4).
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In addition to effects on marine mammal‐eating killer whales, unintended or indirect ecosystem effects should

be expected in the wake of a 50% reduction of a large abundance predator (Lessard et al. 2005, Bowen and Lingard

2013). For example, resulting increases in abundances of seals’ preferred prey could undermine effects to reduce

natural mortality on juvenile salmon if said prey populations consume meaningful numbers of salmon themselves.

Managers should also consider the potential change in behavior of harbor seals, which may impede accurate

population monitoring efforts or increase the difficulty of harvesting or tagging efforts.

Controlling a wild pinniped population with lethal measures would be far less expensive than trapping, marking,

and administering intramuscular injections to thousands of animals. One recent study evaluated the cost of

implementing fertility control in a white‐tailed deer (Odocoileus virginianus) population in North America and

estimated the per animal cost of sterilization was over twice that of culling (Raiho et al. 2015). If the cost per animal

of non‐surgical contraception is assumed to be comparable to that of white‐tailed deer ($750 USD), the annual cost

associated with the vaccination of 5,000 harbor seals would be $3.75 million. In addition to the relatively expensive

cost of contraception, there would likely also be high costs associated with the logistics, equipment, and qualified

personnel needed to execute a management action based on fertility control on a large‐scale. Each animal would

need to be captured, subdued, marked, and inoculated with a vaccine.

The issue of legal constraints on seal harvesting in Canada has not been addressed in recent harvesting

proposals (PBPS 2019), except that Steller sea lions (Eumetopias jubatus) are listed under the Canadian Species at

Risk Act. First Nations peoples can now obtain permits to harvest seals, but only for food and ceremonial purposes,

and may also be able to obtain permits to harvest sea lions because the Canadian Species at Risk Act listing does not

prohibit all harvesting. As evidenced by commercial seal harvesting that has a long and continuing history in eastern

Canada, there is no national legal policy like the United States Marine Mammal Protection Act, which prohibits

harvesting (except under special circumstances). The Department of Fisheries and Oceans Canada has the ability to

manage harvest of marine mammals, but revivals of such opportunities have been constrained (Reidy 2019, Ouchi

et al. 2022). Existing proposals do not address transboundary movement of seals, which occurs (Peterson

et al. 2012) but is unlikely to involve a high proportion of the Canadian population (Olesiuk 2010). At present, the

legal implications of harvesting a protected transboundary stock of marine mammals are unclear.

MANAGEMENT IMPLICATIONS

Harbor seals in British Columbia could be managed effectively through lethal and non‐lethal management actions,

or a combination of both. Our projections suggest that lethal methods would be the most efficient, precise, and the

least expensive way to reduce the population within a reasonable time. If immuno‐contraception with zona

pellucida antigens is effective on harbor seals, this non‐lethal method by itself could potentially within 2 decades, or

in a decade in conjunction with lethal methods, effectively control the harbor seal population in British Columbia. A

strictly non‐lethal approach, however, if there is interest in considering it, would first require studies on captive

populations to confirm the effectiveness of contraception on harbor seals.
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